Neuronal regulation versus synaptic unlearning in memory maintenance mechanisms.

نویسندگان

  • D Horn
  • N Levy
  • E Ruppin
چکیده

Hebbian learning, the paradigm of memory formation, needs further mechanisms to guarantee creation and maintenance of a viable memory system. One such proposed mechanism is Hebbian unlearning, a process hypothesized to occur during sleep. It can remove spurious states and eliminate global correlations in the memory system. However, the problem of spurious states is unimportant in the biologically interesting case of memories that are sparsely coded on excitatory neurons. Moreover, if some memories are anomalously strong and have to be weakened to guarantee proper functioning of the network, we show that it is advantageous to do that by neuronal regulation (NR) rather than synaptic unlearning. Neuronal regulation can account for dynamical maintenance of memory systems that undergo continuous synaptic turnover. This neuronal-based mechanism, regulating all excitatory synapses according to neuronal average activity, has recently gained strong experimental support. NR achieves synaptic maintenance over short time scales by preserving the average neuronal input field. On longer time scales it acts to maintain memories by letting the stronger synapses grow to their upper bounds. In ageing, these bounds are increased to allow stronger values of remaining synapses to overcome the loss of synapses that have perished.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal Regulation vs Synaptic Unlearning in Memory Maintenance Mechanisms

Hebbian learning, the paradigm of memory formation, needs further mechanisms to guarantee creation and maintenance of a viable memory system. One such additional mechanism is Hebbian unlearning, a process hypothesized to occur during sleep. It can remove spurious states and eliminate global correlations in the memory system. The problem of spurious states is unimportant in the biologically inte...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Memory Maintenance via Neuronal Regulation

Since their conception half a century ago, Hebbian cell assemblies have become a basic term in the neurosciences, and the idea that learning takes place through synaptic modifications has been accepted as a fundamental paradigm. As synapses undergo continuous metabolic turnover, adopting the stance that memories are engraved in the synaptic matrix raises a fundamental problem: How can memories ...

متن کامل

Memory retention--the synaptic stability versus plasticity dilemma.

Memory maintenance is widely believed to involve long-term retention of the synaptic weights that are set within relevant neural circuits during learning. However, despite recent exciting technical advances, it has not yet proved possible to confirm experimentally this intuitively appealing hypothesis. Artificial neural networks offer an alternative methodology as they permit continuous monitor...

متن کامل

Autophosphorylation of alphaCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction.

Accumulating evidence indicates the key role of alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which alphaCaMKII may mediate extinction by using heterozygous knock-in mice with a targeted T286A mutation that p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Network

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 1998